GABAA receptors reorganize when layer 4 in ferret somatosensory cortex is disrupted by methylazoxymethanol (MAM).
نویسندگان
چکیده
We established a model of cortical development that arrests the birth of layer 4 cells by injecting methylazoxymethanol (MAM) on embryonic day 33 (E33) in ferrets. This leads to adult somatosensory cortex with a very thin layer 4. Earlier, we determined the relative absence of layer 4 changed the growth and differentiation of the somatosensory cortex and the growth of thalamic afferents into the cortical plate. To identify other features of cortical organization that might be altered after MAM treatment, we assessed the distribution of selected excitatory and inhibitory receptors in area 3b of ferret somatosensory cortex. Initial screening revealed the distribution of several excitatory receptors (NMDA, AMPA, kainate) in E33 MAM-treated cortex was similar to that in normal adult animals. In contrast, the binding pattern of inhibitory GABAA receptors was altered in MAM-treated cortex. Normally, GABAA receptors densely locate in central layers of cortex. In E33 MAM-treated animals, GABAA receptor binding extended superficially, covering a broader area of cortex. Further experiments using antibodies directed against GABAAalpha receptors disclosed that pan alpha GABAA receptors strongly localize to layer 4 in normal area 3b. In E33 MAM-treated cortex, however, GABAAalpha receptors extend outside and are located above and below the very thin layer 4. The redistribution of inhibitory receptors suggests that layer 4 plays an important role in regulating thalamic terminations and also in the resulting ability to refine processing of incoming stimuli.
منابع مشابه
Disruption of layer 4 development alters laminar processing in ferret somatosensory cortex.
Treatment with the anti-mitotic agent methylazoxymethanol (MAM) on embryonic day 33 (E33) in ferrets changes features of somatosensory cortex. These include dramatic reduction of cells in layer 4, and altered distributions of thalamocortical afferent terminations and GABA(A) receptors. To determine the effect of the relative absence of layer 4 on processing of sensory stimuli we used current so...
متن کاملDisruption of layers 3 and 4 during development results in altered thalamocortical projections in ferret somatosensory cortex.
The precision of projections from dorsal thalamus to neocortex are key toward understanding overall cortical organization and function. To identify the significance of layer 4 cells in receiving the bulk of thalamic projections in somatosensory cortex, we disrupted layer 4 genesis and studied the effect on thalamic terminations in ferrets. Second, we ascertained the result of layer 4 disruption...
متن کاملAlteration of interneuron migration in a ferret model of cortical dysplasia.
During cerebral cortical development, gamma-aminobutyric acidergic (GABAergic) interneurons arise from a different site than projection neurons. GABAergic cells are generated in the subpallial ganglionic eminence (GE), while excitatory projection neurons arise from the neocortical ventricular zone. Our laboratory studies a model of cortical dysplasia that displays specific disruption of GABAerg...
متن کاملTargeted disruption of layer 4 during development increases GABAA receptor neurotransmission in the neocortex.
Cortical dysplasia (CD) associates with clinical pathologies, including epilepsy and mental retardation. CD results from impaired migration of immature neurons to their cortical targets, leading to clustering of neural cells and changes in cortical properties. We developed a CD model by administering methylazoxymethanol (MAM), an anti-mitotic, to pregnant ferrets on embryonic day 33; this leads...
متن کاملFinal Examination/private Defense for the Degree of Doctor of Philosophy in in the Neuroscience Graduate Program
Cortical dysplasia is a developmental abnormality characterized by changes in the structure and function of the neocortex. This disorder is implicated in many neuropsychiatric disorders such as epilepsy, autism and schizophrenia, and results from failure of immature neurons to appropriately migrate to their cortical targets. We developed a model of cortical dysplasia by administering methylazox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2004